Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Mueve a la izquierda de .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5
Simplifica.
Paso 1.5.1
Suma y .
Paso 1.5.2
Reordena los términos.
Paso 2
Paso 2.1
Diferencia.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Suma y .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Mueve a la izquierda de .
Paso 4.1.3
Evalúa .
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Multiplica por .
Paso 4.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5
Simplifica.
Paso 4.1.5.1
Suma y .
Paso 4.1.5.2
Reordena los términos.
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Resta de ambos lados de la ecuación.
Paso 5.3
Divide cada término en por y simplifica.
Paso 5.3.1
Divide cada término en por .
Paso 5.3.2
Simplifica el lado izquierdo.
Paso 5.3.2.1
Cancela el factor común de .
Paso 5.3.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2
Reescribe la expresión.
Paso 5.3.2.2
Cancela el factor común de .
Paso 5.3.2.2.1
Cancela el factor común.
Paso 5.3.2.2.2
Divide por .
Paso 5.3.3
Simplifica el lado derecho.
Paso 5.3.3.1
Mueve el negativo al frente de la fracción.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Como la prueba de la primera derivada falló, no hay extremos locales.
No hay extremos locales
Paso 10