Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Descompone la fracción y multiplica por el denominador común.
Paso 1.1.1
Factoriza de .
Paso 1.1.1.1
Eleva a la potencia de .
Paso 1.1.1.2
Factoriza de .
Paso 1.1.1.3
Factoriza de .
Paso 1.1.1.4
Factoriza de .
Paso 1.1.1.5
Multiplica por .
Paso 1.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 1.1.3
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 1.1.4
Cancela el factor común de .
Paso 1.1.4.1
Cancela el factor común.
Paso 1.1.4.2
Reescribe la expresión.
Paso 1.1.5
Cancela el factor común de .
Paso 1.1.5.1
Cancela el factor común.
Paso 1.1.5.2
Reescribe la expresión.
Paso 1.1.6
Simplifica cada término.
Paso 1.1.6.1
Cancela el factor común de .
Paso 1.1.6.1.1
Cancela el factor común.
Paso 1.1.6.1.2
Divide por .
Paso 1.1.6.2
Aplica la propiedad distributiva.
Paso 1.1.6.3
Multiplica por .
Paso 1.1.6.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.1.6.5
Cancela el factor común de .
Paso 1.1.6.5.1
Cancela el factor común.
Paso 1.1.6.5.2
Divide por .
Paso 1.1.7
Simplifica la expresión.
Paso 1.1.7.1
Mueve .
Paso 1.1.7.2
Reordena y .
Paso 1.1.7.3
Mueve .
Paso 1.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Paso 1.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.3
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 1.3
Resuelve el sistema de ecuaciones.
Paso 1.3.1
Reescribe la ecuación como .
Paso 1.3.2
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.2.1
Reemplaza todos los casos de en por .
Paso 1.3.2.2
Simplifica el lado derecho.
Paso 1.3.2.2.1
Multiplica por .
Paso 1.3.3
Resuelve en .
Paso 1.3.3.1
Reescribe la ecuación como .
Paso 1.3.3.2
Suma a ambos lados de la ecuación.
Paso 1.3.4
Resuelve el sistema de ecuaciones.
Paso 1.3.5
Enumera todas las soluciones.
Paso 1.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para y .
Paso 1.5
Elimina el cero de la expresión.
Paso 2
Divide la única integral en varias integrales.
Paso 3
La integral de con respecto a es .
Paso 4
Paso 4.1
Deja . Obtén .
Paso 4.1.1
Reescribe.
Paso 4.1.2
Divide por .
Paso 4.2
Reescribe el problema mediante y .
Paso 5
Mueve el negativo al frente de la fracción.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
La integral de con respecto a es .
Paso 8
Simplifica.
Paso 9
Usa la propiedad del cociente de los logaritmos, .
Paso 10
Reemplaza todos los casos de con .