Cálculo Ejemplos

Evalúe la integral integral de tan(x)^2sec(x) con respecto a x
Paso 1
Eleva a la potencia de .
Paso 2
Mediante la identidad pitagórica, reescribe como .
Paso 3
Simplifica los términos.
Toca para ver más pasos...
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Simplifica cada término.
Paso 4
Divide la única integral en varias integrales.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
La integral de con respecto a es .
Paso 7
Factoriza de .
Paso 8
Integra por partes mediante la fórmula , donde y .
Paso 9
Eleva a la potencia de .
Paso 10
Eleva a la potencia de .
Paso 11
Usa la regla de la potencia para combinar exponentes.
Paso 12
Simplifica la expresión.
Toca para ver más pasos...
Paso 12.1
Suma y .
Paso 12.2
Reordena y .
Paso 13
Mediante la identidad pitagórica, reescribe como .
Paso 14
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 14.1
Reescribe la exponenciación como un producto.
Paso 14.2
Aplica la propiedad distributiva.
Paso 14.3
Reordena y .
Paso 15
Eleva a la potencia de .
Paso 16
Eleva a la potencia de .
Paso 17
Usa la regla de la potencia para combinar exponentes.
Paso 18
Suma y .
Paso 19
Eleva a la potencia de .
Paso 20
Usa la regla de la potencia para combinar exponentes.
Paso 21
Suma y .
Paso 22
Divide la única integral en varias integrales.
Paso 23
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 24
La integral de con respecto a es .
Paso 25
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 25.1
Aplica la propiedad distributiva.
Paso 25.2
Multiplica por .
Paso 26
Al resolver , obtenemos que = .
Paso 27
Multiplica por .
Paso 28
Simplifica.