Ingresa un problema...
Cálculo Ejemplos
Paso 1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2
Paso 2.1
Deja . Obtén .
Paso 2.1.1
Diferencia .
Paso 2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.4
Multiplica por .
Paso 2.2
Reescribe el problema mediante y .
Paso 3
Combina y .
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Combina y .
Paso 6
Usa la fórmula del ángulo mitad para reescribir como .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Paso 8.1
Multiplica por .
Paso 8.2
Multiplica por .
Paso 9
Divide la única integral en varias integrales.
Paso 10
Aplica la regla de la constante.
Paso 11
Paso 11.1
Deja . Obtén .
Paso 11.1.1
Diferencia .
Paso 11.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.1.4
Multiplica por .
Paso 11.2
Reescribe el problema mediante y .
Paso 12
Combina y .
Paso 13
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 14
La integral de con respecto a es .
Paso 15
Simplifica.
Paso 16
Paso 16.1
Reemplaza todos los casos de con .
Paso 16.2
Reemplaza todos los casos de con .
Paso 16.3
Reemplaza todos los casos de con .
Paso 17
Paso 17.1
Simplifica cada término.
Paso 17.1.1
Multiplica por .
Paso 17.1.2
Combina y .
Paso 17.2
Aplica la propiedad distributiva.
Paso 17.3
Cancela el factor común de .
Paso 17.3.1
Factoriza de .
Paso 17.3.2
Factoriza de .
Paso 17.3.3
Cancela el factor común.
Paso 17.3.4
Reescribe la expresión.
Paso 17.4
Combina y .
Paso 17.5
Multiplica .
Paso 17.5.1
Multiplica por .
Paso 17.5.2
Multiplica por .
Paso 18
Reordena los términos.