Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Divide cada término en por y simplifica.
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Paso 2.3.2.1
Cancela el factor común de .
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Paso 2.3.3.1
Divide por .
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Después de buscar el punto que hace que la derivada sea igual a o indefinida, el intervalo para verificar dónde está aumentando y dónde está disminuyendo es .
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Multiplica por .
Paso 6.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 7
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 8