Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas f(x)=x^4-32x+4
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Resta de ambos lados de la ecuación.
Paso 2.4
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.4.1
Factoriza de .
Toca para ver más pasos...
Paso 2.4.1.1
Factoriza de .
Paso 2.4.1.2
Factoriza de .
Paso 2.4.1.3
Factoriza de .
Paso 2.4.2
Reescribe como .
Paso 2.4.3
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la diferencia de cubos, , donde y .
Paso 2.4.4
Factoriza.
Toca para ver más pasos...
Paso 2.4.4.1
Simplifica.
Toca para ver más pasos...
Paso 2.4.4.1.1
Mueve a la izquierda de .
Paso 2.4.4.1.2
Eleva a la potencia de .
Paso 2.4.4.2
Elimina los paréntesis innecesarios.
Paso 2.5
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.6
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.7.1
Establece igual a .
Paso 2.7.2
Resuelve en .
Toca para ver más pasos...
Paso 2.7.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2.7.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 2.7.2.3
Simplifica.
Toca para ver más pasos...
Paso 2.7.2.3.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.7.2.3.1.1
Eleva a la potencia de .
Paso 2.7.2.3.1.2
Multiplica .
Toca para ver más pasos...
Paso 2.7.2.3.1.2.1
Multiplica por .
Paso 2.7.2.3.1.2.2
Multiplica por .
Paso 2.7.2.3.1.3
Resta de .
Paso 2.7.2.3.1.4
Reescribe como .
Paso 2.7.2.3.1.5
Reescribe como .
Paso 2.7.2.3.1.6
Reescribe como .
Paso 2.7.2.3.1.7
Reescribe como .
Toca para ver más pasos...
Paso 2.7.2.3.1.7.1
Factoriza de .
Paso 2.7.2.3.1.7.2
Reescribe como .
Paso 2.7.2.3.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.3.1.9
Mueve a la izquierda de .
Paso 2.7.2.3.2
Multiplica por .
Paso 2.7.2.3.3
Simplifica .
Paso 2.7.2.4
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 2.7.2.4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.7.2.4.1.1
Eleva a la potencia de .
Paso 2.7.2.4.1.2
Multiplica .
Toca para ver más pasos...
Paso 2.7.2.4.1.2.1
Multiplica por .
Paso 2.7.2.4.1.2.2
Multiplica por .
Paso 2.7.2.4.1.3
Resta de .
Paso 2.7.2.4.1.4
Reescribe como .
Paso 2.7.2.4.1.5
Reescribe como .
Paso 2.7.2.4.1.6
Reescribe como .
Paso 2.7.2.4.1.7
Reescribe como .
Toca para ver más pasos...
Paso 2.7.2.4.1.7.1
Factoriza de .
Paso 2.7.2.4.1.7.2
Reescribe como .
Paso 2.7.2.4.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.4.1.9
Mueve a la izquierda de .
Paso 2.7.2.4.2
Multiplica por .
Paso 2.7.2.4.3
Simplifica .
Paso 2.7.2.4.4
Cambia a .
Paso 2.7.2.5
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 2.7.2.5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.7.2.5.1.1
Eleva a la potencia de .
Paso 2.7.2.5.1.2
Multiplica .
Toca para ver más pasos...
Paso 2.7.2.5.1.2.1
Multiplica por .
Paso 2.7.2.5.1.2.2
Multiplica por .
Paso 2.7.2.5.1.3
Resta de .
Paso 2.7.2.5.1.4
Reescribe como .
Paso 2.7.2.5.1.5
Reescribe como .
Paso 2.7.2.5.1.6
Reescribe como .
Paso 2.7.2.5.1.7
Reescribe como .
Toca para ver más pasos...
Paso 2.7.2.5.1.7.1
Factoriza de .
Paso 2.7.2.5.1.7.2
Reescribe como .
Paso 2.7.2.5.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.5.1.9
Mueve a la izquierda de .
Paso 2.7.2.5.2
Multiplica por .
Paso 2.7.2.5.3
Simplifica .
Paso 2.7.2.5.4
Cambia a .
Paso 2.7.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 2.8
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Después de buscar el punto que hace que la derivada sea igual a o indefinida, el intervalo para verificar dónde está aumentando y dónde está disminuyendo es .
Paso 5
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 5.2.1.2
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 7
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 8