Cálculo Ejemplos

Hallar la recta tangente horizontal y=x+sin(x)
Paso 1
Establece como una función de .
Paso 2
Obtén la derivada.
Toca para ver más pasos...
Paso 2.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
La derivada de con respecto a es .
Paso 3
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Resta de ambos lados de la ecuación.
Paso 3.2
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
El valor exacto de es .
Paso 3.4
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Paso 3.5
Resta de .
Paso 3.6
Obtén el período de .
Toca para ver más pasos...
Paso 3.6.1
El período de la función puede calcularse mediante .
Paso 3.6.2
Reemplaza con en la fórmula para el período.
Paso 3.6.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.6.4
Divide por .
Paso 3.7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.2.1.2
El valor exacto de es .
Paso 4.2.2
Suma y .
Paso 4.2.3
La respuesta final es .
Paso 5
Resuelve la función original en .
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Suma y .
Paso 5.2.1.2
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 5.2.1.3
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 5.2.1.4
El valor exacto de es .
Paso 5.2.2
Simplifica mediante la adición de términos.
Toca para ver más pasos...
Paso 5.2.2.1
Suma y .
Paso 5.2.2.2
Suma y .
Paso 5.2.3
La respuesta final es .
Paso 6
La tangente horizontal en la función es .
Paso 7