Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Reescribe como .
Paso 1.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Reemplaza todos los casos de con .
Paso 1.1.3
Diferencia.
Paso 1.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.4
Simplifica la expresión.
Paso 1.1.3.4.1
Suma y .
Paso 1.1.3.4.2
Multiplica por .
Paso 1.1.4
Simplifica.
Paso 1.1.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.4.2
Combina los términos.
Paso 1.1.4.2.1
Combina y .
Paso 1.1.4.2.2
Mueve el negativo al frente de la fracción.
Paso 1.1.4.2.3
Combina y .
Paso 1.1.4.2.4
Mueve a la izquierda de .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Divide cada término en por y simplifica.
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Paso 2.3.2.1
Cancela el factor común de .
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Paso 2.3.3.1
Divide por .
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica el denominador.
Paso 4.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.2
Suma y .
Paso 4.1.2.2
Divide por .
Paso 4.2
Enumera todos los puntos.
Paso 5