Cálculo Ejemplos

Hallar los puntos críticos f(x)=4+1/3x-1/2x^2
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.3.4
Combina y .
Paso 1.1.3.5
Combina y .
Paso 1.1.3.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.1.3.6.1
Factoriza de .
Paso 1.1.3.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.1.3.6.2.1
Factoriza de .
Paso 1.1.3.6.2.2
Cancela el factor común.
Paso 1.1.3.6.2.3
Reescribe la expresión.
Paso 1.1.3.6.2.4
Divide por .
Paso 1.1.4
Simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Suma y .
Paso 1.1.4.2
Reordena los términos.
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Resta de ambos lados de la ecuación.
Paso 2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3.2.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3.3.2
Divide por .
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.1.1.1
Multiplica por .
Paso 4.1.2.1.1.2
Multiplica por .
Paso 4.1.2.1.2
Aplica la regla del producto a .
Paso 4.1.2.1.3
Uno elevado a cualquier potencia es uno.
Paso 4.1.2.1.4
Eleva a la potencia de .
Paso 4.1.2.1.5
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.1.5.1
Multiplica por .
Paso 4.1.2.1.5.2
Multiplica por .
Paso 4.1.2.2
Obtén el denominador común
Toca para ver más pasos...
Paso 4.1.2.2.1
Escribe como una fracción con el denominador .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.2.3
Multiplica por .
Paso 4.1.2.2.4
Multiplica por .
Paso 4.1.2.2.5
Multiplica por .
Paso 4.1.2.2.6
Reordena los factores de .
Paso 4.1.2.2.7
Multiplica por .
Paso 4.1.2.3
Combina los numeradores sobre el denominador común.
Paso 4.1.2.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.1.2.4.1
Multiplica por .
Paso 4.1.2.4.2
Suma y .
Paso 4.1.2.4.3
Resta de .
Paso 4.2
Enumera todos los puntos.
Paso 5