Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Diferencia.
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Simplifica la expresión.
Paso 2.3.3.1
Multiplica por .
Paso 2.3.3.2
Mueve a la izquierda de .
Paso 2.3.3.3
Reescribe como .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.5
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Reordena los términos.
Paso 2.4.2
Reordena los factores en .
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.2.3.3
Reemplaza todos los casos de con .
Paso 3.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.7
Multiplica por .
Paso 3.2.8
Mueve a la izquierda de .
Paso 3.2.9
Reescribe como .
Paso 3.2.10
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.3.1.3
Reemplaza todos los casos de con .
Paso 3.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.4
Multiplica por .
Paso 3.3.5
Mueve a la izquierda de .
Paso 3.3.6
Reescribe como .
Paso 3.4
Simplifica.
Paso 3.4.1
Aplica la propiedad distributiva.
Paso 3.4.2
Combina los términos.
Paso 3.4.2.1
Multiplica por .
Paso 3.4.2.2
Multiplica por .
Paso 3.4.2.3
Resta de .
Paso 3.4.3
Reordena los términos.
Paso 3.4.4
Reordena los factores en .
Paso 4
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 5
Paso 5.1
Obtén la primera derivada.
Paso 5.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 5.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 5.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 5.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 5.1.2.3
Reemplaza todos los casos de con .
Paso 5.1.3
Diferencia.
Paso 5.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.3.3
Simplifica la expresión.
Paso 5.1.3.3.1
Multiplica por .
Paso 5.1.3.3.2
Mueve a la izquierda de .
Paso 5.1.3.3.3
Reescribe como .
Paso 5.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.3.5
Multiplica por .
Paso 5.1.4
Simplifica.
Paso 5.1.4.1
Reordena los términos.
Paso 5.1.4.2
Reordena los factores en .
Paso 5.2
La primera derivada de con respecto a es .
Paso 6
Paso 6.1
Establece la primera derivada igual a .
Paso 6.2
Factoriza de .
Paso 6.2.1
Factoriza de .
Paso 6.2.2
Multiplica por .
Paso 6.2.3
Factoriza de .
Paso 6.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.4
Establece igual a y resuelve .
Paso 6.4.1
Establece igual a .
Paso 6.4.2
Resuelve en .
Paso 6.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 6.4.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 6.4.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 6.5
Establece igual a y resuelve .
Paso 6.5.1
Establece igual a .
Paso 6.5.2
Resuelve en .
Paso 6.5.2.1
Resta de ambos lados de la ecuación.
Paso 6.5.2.2
Divide cada término en por y simplifica.
Paso 6.5.2.2.1
Divide cada término en por .
Paso 6.5.2.2.2
Simplifica el lado izquierdo.
Paso 6.5.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 6.5.2.2.2.2
Divide por .
Paso 6.5.2.2.3
Simplifica el lado derecho.
Paso 6.5.2.2.3.1
Divide por .
Paso 6.6
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Paso 7.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 8
Puntos críticos para evaluar.
Paso 9
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 10
Paso 10.1
Simplifica cada término.
Paso 10.1.1
Multiplica por .
Paso 10.1.2
Multiplica por .
Paso 10.1.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 10.1.4
Multiplica por .
Paso 10.1.5
Reescribe la expresión mediante la regla del exponente negativo .
Paso 10.1.6
Combina y .
Paso 10.1.7
Mueve el negativo al frente de la fracción.
Paso 10.2
Combina fracciones.
Paso 10.2.1
Combina los numeradores sobre el denominador común.
Paso 10.2.2
Simplifica la expresión.
Paso 10.2.2.1
Resta de .
Paso 10.2.2.2
Mueve el negativo al frente de la fracción.
Paso 11
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 12
Paso 12.1
Reemplaza la variable con en la expresión.
Paso 12.2
Simplifica el resultado.
Paso 12.2.1
Multiplica por .
Paso 12.2.2
Multiplica por .
Paso 12.2.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 12.2.4
La respuesta final es .
Paso 13
Estos son los extremos locales de .
es un máximo local
Paso 14