Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Paso 1.1.2.1
Evalúa el límite.
Paso 1.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.2.1.3
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.1.4
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.1.5
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.1.6
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.1.7
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Paso 1.1.2.3.1
Suma y .
Paso 1.1.2.3.2
Simplifica cada término.
Paso 1.1.2.3.2.1
Multiplica por .
Paso 1.1.2.3.2.2
Reescribe como .
Paso 1.1.2.3.2.3
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.1.2.3.2.3.1
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.3.2
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.3.3
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.4
Simplifica y combina los términos similares.
Paso 1.1.2.3.2.4.1
Simplifica cada término.
Paso 1.1.2.3.2.4.1.1
Multiplica por .
Paso 1.1.2.3.2.4.1.2
Mueve a la izquierda de .
Paso 1.1.2.3.2.4.1.3
Multiplica por .
Paso 1.1.2.3.2.4.2
Resta de .
Paso 1.1.2.3.2.5
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.6
Simplifica.
Paso 1.1.2.3.2.6.1
Multiplica por .
Paso 1.1.2.3.2.6.2
Multiplica por .
Paso 1.1.2.3.2.7
Reescribe como .
Paso 1.1.2.3.2.8
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.1.2.3.2.8.1
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.8.2
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.8.3
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.9
Simplifica y combina los términos similares.
Paso 1.1.2.3.2.9.1
Simplifica cada término.
Paso 1.1.2.3.2.9.1.1
Multiplica por .
Paso 1.1.2.3.2.9.1.2
Mueve a la izquierda de .
Paso 1.1.2.3.2.9.1.3
Multiplica por .
Paso 1.1.2.3.2.9.2
Resta de .
Paso 1.1.2.3.2.10
Aplica la propiedad distributiva.
Paso 1.1.2.3.2.11
Simplifica.
Paso 1.1.2.3.2.11.1
Multiplica por .
Paso 1.1.2.3.2.11.2
Multiplica por .
Paso 1.1.2.3.3
Combina los términos opuestos en .
Paso 1.1.2.3.3.1
Resta de .
Paso 1.1.2.3.3.2
Suma y .
Paso 1.1.2.3.3.3
Suma y .
Paso 1.1.2.3.3.4
Suma y .
Paso 1.1.2.3.3.5
Resta de .
Paso 1.1.3
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Reescribe como .
Paso 1.3.3
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 1.3.4
Simplifica cada término.
Paso 1.3.4.1
Multiplica por .
Paso 1.3.4.2
Mueve a la izquierda de .
Paso 1.3.4.3
Multiplica por .
Paso 1.3.4.4
Mueve a la izquierda de .
Paso 1.3.4.5
Multiplica por .
Paso 1.3.5
Suma y .
Paso 1.3.5.1
Reordena y .
Paso 1.3.5.2
Suma y .
Paso 1.3.6
Resta de .
Paso 1.3.7
Resta de .
Paso 1.3.8
Reescribe como .
Paso 1.3.9
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.3.9.1
Aplica la propiedad distributiva.
Paso 1.3.9.2
Aplica la propiedad distributiva.
Paso 1.3.9.3
Aplica la propiedad distributiva.
Paso 1.3.10
Simplifica y combina los términos similares.
Paso 1.3.10.1
Simplifica cada término.
Paso 1.3.10.1.1
Multiplica por .
Paso 1.3.10.1.2
Mueve a la izquierda de .
Paso 1.3.10.1.3
Multiplica por .
Paso 1.3.10.2
Resta de .
Paso 1.3.11
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.12
Evalúa .
Paso 1.3.12.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.12.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.12.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.12.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.12.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12.11
Multiplica por .
Paso 1.3.12.12
Suma y .
Paso 1.3.12.13
Multiplica por .
Paso 1.3.12.14
Suma y .
Paso 1.3.12.15
Suma y .
Paso 1.3.13
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.14
Simplifica.
Paso 1.3.14.1
Aplica la propiedad distributiva.
Paso 1.3.14.2
Combina los términos.
Paso 1.3.14.2.1
Multiplica por .
Paso 1.3.14.2.2
Multiplica por .
Paso 1.3.14.2.3
Multiplica por .
Paso 1.3.14.2.4
Suma y .
Paso 1.3.14.3
Reordena los términos.
Paso 1.3.15
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4
Divide por .
Paso 2
Paso 2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 3
Evalúa el límite de mediante el ingreso de para .
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Multiplica por .
Paso 4.1.2
Multiplica por .
Paso 4.2
Suma y .