Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Paso 1.1.2.1
Evalúa el límite.
Paso 1.1.2.1.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.1.2
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.1.3
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.1.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Paso 1.1.2.3.1
Simplifica cada término.
Paso 1.1.2.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.1.2.3.1.2
Multiplica por .
Paso 1.1.2.3.2
Resta de .
Paso 1.1.2.3.3
Elevar a cualquier potencia positiva da como resultado .
Paso 1.1.3
Evalúa el límite del denominador.
Paso 1.1.3.1
Evalúa el límite.
Paso 1.1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.3.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Simplifica la respuesta.
Paso 1.1.3.3.1
Simplifica cada término.
Paso 1.1.3.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.1.3.3.1.2
Multiplica por .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.2.3
Reemplaza todos los casos de con .
Paso 1.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.6
Suma y .
Paso 1.3.7
Multiplica por .
Paso 1.3.8
Reordena los factores de .
Paso 1.3.9
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.10
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.11
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.12
Suma y .
Paso 1.4
Reduce.
Paso 1.4.1
Cancela el factor común de y .
Paso 1.4.1.1
Factoriza de .
Paso 1.4.1.2
Cancela los factores comunes.
Paso 1.4.1.2.1
Factoriza de .
Paso 1.4.1.2.2
Cancela el factor común.
Paso 1.4.1.2.3
Reescribe la expresión.
Paso 1.4.2
Cancela el factor común de y .
Paso 1.4.2.1
Factoriza de .
Paso 1.4.2.2
Cancela los factores comunes.
Paso 1.4.2.2.1
Factoriza de .
Paso 1.4.2.2.2
Cancela el factor común.
Paso 1.4.2.2.3
Reescribe la expresión.
Paso 2
Paso 2.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.2
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 2.3
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 2.4
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.5
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 2.6
Evalúa el límite de que es constante cuando se acerca a .
Paso 3
Paso 3.1
Evalúa el límite de mediante el ingreso de para .
Paso 3.2
Evalúa el límite de mediante el ingreso de para .
Paso 4
Paso 4.1
Divide por .
Paso 4.2
Simplifica cada término.
Paso 4.2.1
Uno elevado a cualquier potencia es uno.
Paso 4.2.2
Multiplica por .
Paso 4.3
Resta de .
Paso 4.4
Elevar a cualquier potencia positiva da como resultado .
Paso 4.5
Multiplica por .