Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza de .
Paso 2.2.1
Factoriza de .
Paso 2.2.2
Factoriza de .
Paso 2.2.3
Factoriza de .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Paso 2.4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4.2.2
Simplifica .
Paso 2.4.2.2.1
Reescribe como .
Paso 2.4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.4.2.2.3
Más o menos es .
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Suma a ambos lados de la ecuación.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.1.3
Eleva a la potencia de .
Paso 5.2.1.4
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Aplica la regla del producto a .
Paso 6.2.1.2
Eleva a la potencia de .
Paso 6.2.1.3
Eleva a la potencia de .
Paso 6.2.1.4
Cancela el factor común de .
Paso 6.2.1.4.1
Factoriza de .
Paso 6.2.1.4.2
Cancela el factor común.
Paso 6.2.1.4.3
Reescribe la expresión.
Paso 6.2.1.5
Aplica la regla del producto a .
Paso 6.2.1.6
Eleva a la potencia de .
Paso 6.2.1.7
Eleva a la potencia de .
Paso 6.2.1.8
Cancela el factor común de .
Paso 6.2.1.8.1
Factoriza de .
Paso 6.2.1.8.2
Cancela el factor común.
Paso 6.2.1.8.3
Reescribe la expresión.
Paso 6.2.1.9
Multiplica por .
Paso 6.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.2.3
Combina y .
Paso 6.2.4
Combina los numeradores sobre el denominador común.
Paso 6.2.5
Simplifica el numerador.
Paso 6.2.5.1
Multiplica por .
Paso 6.2.5.2
Resta de .
Paso 6.2.6
Mueve el negativo al frente de la fracción.
Paso 6.2.7
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Multiplica por sumando los exponentes.
Paso 7.2.1.1.1
Multiplica por .
Paso 7.2.1.1.1.1
Eleva a la potencia de .
Paso 7.2.1.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 7.2.1.1.2
Suma y .
Paso 7.2.1.2
Eleva a la potencia de .
Paso 7.2.1.3
Eleva a la potencia de .
Paso 7.2.1.4
Multiplica por .
Paso 7.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9