Cálculo Ejemplos

Evalúe la integral integral de 1 a e de x^2 logaritmo natural de x con respecto a x
Paso 1
Integra por partes mediante la fórmula , donde y .
Paso 2
Simplifica.
Toca para ver más pasos...
Paso 2.1
Combina y .
Paso 2.2
Combina y .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Combina y .
Paso 4.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.2.1
Factoriza de .
Paso 4.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.2.2.1
Eleva a la potencia de .
Paso 4.2.2.2
Factoriza de .
Paso 4.2.2.3
Cancela el factor común.
Paso 4.2.2.4
Reescribe la expresión.
Paso 4.2.2.5
Divide por .
Paso 5
Según la regla de la potencia, la integral de con respecto a es .
Paso 6
Sustituye y simplifica.
Toca para ver más pasos...
Paso 6.1
Evalúa en y en .
Paso 6.2
Evalúa en y en .
Paso 6.3
Simplifica.
Toca para ver más pasos...
Paso 6.3.1
Uno elevado a cualquier potencia es uno.
Paso 6.3.2
Multiplica por .
Paso 6.3.3
Combina y .
Paso 6.3.4
Uno elevado a cualquier potencia es uno.
Paso 6.3.5
Multiplica por .
Paso 6.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.3.7
Combina y .
Paso 6.3.8
Combina los numeradores sobre el denominador común.
Paso 6.3.9
Multiplica por .
Paso 6.3.10
Combina y .
Paso 6.3.11
Cancela el factor común de y .
Toca para ver más pasos...
Paso 6.3.11.1
Factoriza de .
Paso 6.3.11.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 6.3.11.2.1
Factoriza de .
Paso 6.3.11.2.2
Cancela el factor común.
Paso 6.3.11.2.3
Reescribe la expresión.
Paso 6.3.11.2.4
Divide por .
Paso 7
Simplifica.
Toca para ver más pasos...
Paso 7.1
Combina los numeradores sobre el denominador común.
Paso 7.2
Simplifica cada término.
Toca para ver más pasos...
Paso 7.2.1
El logaritmo natural de es .
Paso 7.2.2
Multiplica por .
Paso 7.2.3
Aplica la propiedad distributiva.
Paso 7.2.4
Multiplica .
Toca para ver más pasos...
Paso 7.2.4.1
Multiplica por .
Paso 7.2.4.2
Multiplica por .
Paso 7.2.5
El logaritmo natural de es .
Paso 7.2.6
Multiplica por .
Paso 7.3
Combina los numeradores sobre el denominador común.
Paso 7.4
Mueve el negativo al frente de la fracción.
Paso 7.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.6
Combina y .
Paso 7.7
Combina los numeradores sobre el denominador común.
Paso 7.8
Combina los numeradores sobre el denominador común.
Paso 7.9
Mueve a la izquierda de .
Paso 7.10
Resta de .
Paso 7.11
Multiplica el numerador por la recíproca del denominador.
Paso 7.12
Multiplica .
Toca para ver más pasos...
Paso 7.12.1
Multiplica por .
Paso 7.12.2
Multiplica por .
Paso 8
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: