Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2
La derivada de con respecto a es .
Paso 1.1.3
Reemplaza todos los casos de con .
Paso 1.2
Diferencia.
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Simplifica la expresión.
Paso 1.2.3.1
Multiplica por .
Paso 1.2.3.2
Reordena los factores de .
Paso 2
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2
La derivada de con respecto a es .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Eleva a la potencia de .
Paso 2.5
Eleva a la potencia de .
Paso 2.6
Usa la regla de la potencia para combinar exponentes.
Paso 2.7
Suma y .
Paso 2.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.9
Multiplica por .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Divide cada término en por .
Paso 4.2
Simplifica el lado izquierdo.
Paso 4.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 4.2.2
Cancela el factor común de .
Paso 4.2.2.1
Cancela el factor común.
Paso 4.2.2.2
Divide por .
Paso 4.3
Simplifica el lado derecho.
Paso 4.3.1
Divide por .
Paso 5
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 6
Paso 6.1
El valor exacto de es .
Paso 7
Paso 7.1
Divide cada término en por .
Paso 7.2
Simplifica el lado izquierdo.
Paso 7.2.1
Cancela el factor común de .
Paso 7.2.1.1
Cancela el factor común.
Paso 7.2.1.2
Divide por .
Paso 7.3
Simplifica el lado derecho.
Paso 7.3.1
Divide por .
Paso 8
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Paso 9
Paso 9.1
Simplifica.
Paso 9.1.1
Multiplica por .
Paso 9.1.2
Suma y .
Paso 9.2
Divide cada término en por y simplifica.
Paso 9.2.1
Divide cada término en por .
Paso 9.2.2
Simplifica el lado izquierdo.
Paso 9.2.2.1
Cancela el factor común de .
Paso 9.2.2.1.1
Cancela el factor común.
Paso 9.2.2.1.2
Divide por .
Paso 9.2.3
Simplifica el lado derecho.
Paso 9.2.3.1
Cancela el factor común de .
Paso 9.2.3.1.1
Cancela el factor común.
Paso 9.2.3.1.2
Reescribe la expresión.
Paso 10
La solución a la ecuación .
Paso 11
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 12
Paso 12.1
Multiplica por .
Paso 12.2
El valor exacto de es .
Paso 12.3
Multiplica por .
Paso 13
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 14
Paso 14.1
Reemplaza la variable con en la expresión.
Paso 14.2
Simplifica el resultado.
Paso 14.2.1
Multiplica por .
Paso 14.2.2
El valor exacto de es .
Paso 14.2.3
La respuesta final es .
Paso 15
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 16
Paso 16.1
Multiplica por .
Paso 16.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el segundo cuadrante.
Paso 16.3
El valor exacto de es .
Paso 16.4
Multiplica por .
Paso 16.5
Multiplica .
Paso 16.5.1
Multiplica por .
Paso 16.5.2
Multiplica por .
Paso 17
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 18
Paso 18.1
Reemplaza la variable con en la expresión.
Paso 18.2
Simplifica el resultado.
Paso 18.2.1
Multiplica por .
Paso 18.2.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el segundo cuadrante.
Paso 18.2.3
El valor exacto de es .
Paso 18.2.4
Multiplica por .
Paso 18.2.5
La respuesta final es .
Paso 19
Estos son los extremos locales de .
es un máximo local
es un mínimo local
Paso 20