Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.2
Obtener la segunda derivada.
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Evalúa .
Paso 1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.2.3
Multiplica por .
Paso 1.2.3
Diferencia con la regla de la constante.
Paso 1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3.2
Suma y .
Paso 1.3
La segunda derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la segunda derivada igual a .
Paso 2.2
Divide cada término en por y simplifica.
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.1
Cancela el factor común de .
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Paso 2.2.3.1
Divide por .
Paso 3
Paso 3.1
Sustituye en para obtener el valor de .
Paso 3.1.1
Reemplaza la variable con en la expresión.
Paso 3.1.2
Simplifica el resultado.
Paso 3.1.2.1
Simplifica cada término.
Paso 3.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.1.2.1.2
Multiplica por .
Paso 3.1.2.2
Suma y .
Paso 3.1.2.3
La respuesta final es .
Paso 3.2
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4
Divide en intervalos alrededor de los puntos que podrían ser puntos de inflexión.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Multiplica por .
Paso 5.2.2
La respuesta final es .
Paso 5.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Multiplica por .
Paso 6.2.2
La respuesta final es .
Paso 6.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 7
Un punto de inflexión es un punto en una curva en el que la concavidad cambia de signo de más a menos o de menos a más. El punto de inflexión en este caso es .
Paso 8