Cálculo Ejemplos

Hallar los puntos críticos 12x^2-176x+484
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.3.3.1.1
Factoriza de .
Paso 2.3.3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.3.3.1.2.1
Factoriza de .
Paso 2.3.3.1.2.2
Cancela el factor común.
Paso 2.3.3.1.2.3
Reescribe la expresión.
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Aplica la regla del producto a .
Paso 4.1.2.1.2
Eleva a la potencia de .
Paso 4.1.2.1.3
Eleva a la potencia de .
Paso 4.1.2.1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.2.1.4.1
Factoriza de .
Paso 4.1.2.1.4.2
Factoriza de .
Paso 4.1.2.1.4.3
Cancela el factor común.
Paso 4.1.2.1.4.4
Reescribe la expresión.
Paso 4.1.2.1.5
Combina y .
Paso 4.1.2.1.6
Multiplica por .
Paso 4.1.2.1.7
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.1.7.1
Combina y .
Paso 4.1.2.1.7.2
Multiplica por .
Paso 4.1.2.1.8
Mueve el negativo al frente de la fracción.
Paso 4.1.2.2
Combina fracciones.
Toca para ver más pasos...
Paso 4.1.2.2.1
Combina los numeradores sobre el denominador común.
Paso 4.1.2.2.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.1.2.2.2.1
Resta de .
Paso 4.1.2.2.2.2
Mueve el negativo al frente de la fracción.
Paso 4.1.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.4
Combina y .
Paso 4.1.2.5
Combina los numeradores sobre el denominador común.
Paso 4.1.2.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.2.6.1
Multiplica por .
Paso 4.1.2.6.2
Resta de .
Paso 4.1.2.7
Mueve el negativo al frente de la fracción.
Paso 4.2
Enumera todos los puntos.
Paso 5