Cálculo Ejemplos

Evalúe la integral integral de arctan(8t) con respecto a t
Paso 1
Integra por partes mediante la fórmula , donde y .
Paso 2
Simplifica.
Toca para ver más pasos...
Paso 2.1
Combina y .
Paso 2.2
Mueve a la izquierda de .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Multiplica por .
Paso 5
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 5.1
Deja . Obtén .
Toca para ver más pasos...
Paso 5.1.1
Diferencia .
Paso 5.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.1.3
Evalúa .
Toca para ver más pasos...
Paso 5.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.3.3
Multiplica por .
Paso 5.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 5.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.4.2
Suma y .
Paso 5.2
Reescribe el problema mediante y .
Paso 6
Simplifica.
Toca para ver más pasos...
Paso 6.1
Multiplica por .
Paso 6.2
Mueve a la izquierda de .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Simplifica.
Toca para ver más pasos...
Paso 8.1
Combina y .
Paso 8.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 8.2.1
Factoriza de .
Paso 8.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 8.2.2.1
Factoriza de .
Paso 8.2.2.2
Cancela el factor común.
Paso 8.2.2.3
Reescribe la expresión.
Paso 8.3
Mueve el negativo al frente de la fracción.
Paso 9
La integral de con respecto a es .
Paso 10
Simplifica.
Paso 11
Reemplaza todos los casos de con .