Cálculo Ejemplos

Hallar los máximos y mínimos locales e^(1-20x+5x^2)
Paso 1
Escribe como una función.
Paso 2
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 2.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.1.3
Reemplaza todos los casos de con .
Paso 2.2
Diferencia.
Toca para ver más pasos...
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3
Suma y .
Paso 2.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.6
Multiplica por .
Paso 2.2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.9
Multiplica por .
Paso 3
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 3.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.2
Diferencia.
Toca para ver más pasos...
Paso 3.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.3
Suma y .
Paso 3.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 3.2.6.1
Multiplica por .
Paso 3.2.6.2
Mueve a la izquierda de .
Paso 3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.3.3
Reemplaza todos los casos de con .
Paso 3.4
Diferencia.
Toca para ver más pasos...
Paso 3.4.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.4.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.3
Suma y .
Paso 3.4.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.6
Multiplica por .
Paso 3.4.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.9
Multiplica por .
Paso 3.5
Eleva a la potencia de .
Paso 3.6
Eleva a la potencia de .
Paso 3.7
Usa la regla de la potencia para combinar exponentes.
Paso 3.8
Suma y .
Paso 3.9
Reordena los términos.
Paso 4
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 5
Obtén la primera derivada.
Toca para ver más pasos...
Paso 5.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 5.1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 5.1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 5.1.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 5.1.1.3
Reemplaza todos los casos de con .
Paso 5.1.2
Diferencia.
Toca para ver más pasos...
Paso 5.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.2.3
Suma y .
Paso 5.1.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.2.6
Multiplica por .
Paso 5.1.2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.2.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.2.9
Multiplica por .
Paso 5.2
La primera derivada de con respecto a es .
Paso 6
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 6.1
Establece la primera derivada igual a .
Paso 6.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 6.3.1
Establece igual a .
Paso 6.3.2
Resuelve en .
Toca para ver más pasos...
Paso 6.3.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 6.3.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 6.3.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 6.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 6.4.1
Establece igual a .
Paso 6.4.2
Resuelve en .
Toca para ver más pasos...
Paso 6.4.2.1
Suma a ambos lados de la ecuación.
Paso 6.4.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 6.4.2.2.1
Divide cada término en por .
Paso 6.4.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 6.4.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.4.2.2.2.1.1
Cancela el factor común.
Paso 6.4.2.2.2.1.2
Divide por .
Paso 6.4.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 6.4.2.2.3.1
Divide por .
Paso 6.5
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 7.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 8
Puntos críticos para evaluar.
Paso 9
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 10
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 10.1
Simplifica cada término.
Toca para ver más pasos...
Paso 10.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 10.1.1.1
Multiplica por .
Paso 10.1.1.2
Eleva a la potencia de .
Paso 10.1.1.3
Multiplica por .
Paso 10.1.2
Resta de .
Paso 10.1.3
Suma y .
Paso 10.1.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 10.1.5
Multiplica por .
Paso 10.1.6
Suma y .
Paso 10.1.7
Elevar a cualquier potencia positiva da como resultado .
Paso 10.1.8
Multiplica por .
Paso 10.1.9
Simplifica cada término.
Toca para ver más pasos...
Paso 10.1.9.1
Multiplica por .
Paso 10.1.9.2
Eleva a la potencia de .
Paso 10.1.9.3
Multiplica por .
Paso 10.1.10
Resta de .
Paso 10.1.11
Suma y .
Paso 10.1.12
Reescribe la expresión mediante la regla del exponente negativo .
Paso 10.1.13
Combina y .
Paso 10.2
Suma y .
Paso 11
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 12
Obtén el valor de y cuando .
Toca para ver más pasos...
Paso 12.1
Reemplaza la variable con en la expresión.
Paso 12.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 12.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 12.2.1.1
Multiplica por .
Paso 12.2.1.2
Eleva a la potencia de .
Paso 12.2.1.3
Multiplica por .
Paso 12.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 12.2.2.1
Resta de .
Paso 12.2.2.2
Suma y .
Paso 12.2.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 12.2.4
La respuesta final es .
Paso 13
Estos son los extremos locales de .
es un mínimo local
Paso 14