Ingresa un problema...
Cálculo Ejemplos
Step 1
Resta el límite del numerador y el límite del denominador.
Evalúa el límite del numerador.
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Evalúa el límite de mediante el ingreso de para .
El valor exacto de es .
Evalúa el límite de mediante el ingreso de para .
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Step 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Step 3
Diferencia el numerador y el denominador.
La derivada de con respecto a es .
Diferencia con la regla de la potencia, que establece que es donde .
Step 4
Divide por .
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Step 5
Evalúa el límite de mediante el ingreso de para .
Step 6
El valor exacto de es .