Ingresa un problema...
Cálculo Ejemplos
on ,
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.4
Suma y .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Divide cada término en por y simplifica.
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.2.1
Cancela el factor común de .
Paso 1.2.2.2.1.1
Cancela el factor común.
Paso 1.2.2.2.1.2
Divide por .
Paso 1.2.2.3
Simplifica el lado derecho.
Paso 1.2.2.3.1
Divide por .
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Paso 1.4.1
Evalúa en .
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Paso 1.4.1.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.1.2.2
Resta de .
Paso 1.4.2
Enumera todos los puntos.
Paso 2
Paso 2.1
Evalúa en .
Paso 2.1.1
Sustituye por .
Paso 2.1.2
Simplifica.
Paso 2.1.2.1
Eleva a la potencia de .
Paso 2.1.2.2
Resta de .
Paso 2.2
Evalúa en .
Paso 2.2.1
Sustituye por .
Paso 2.2.2
Simplifica.
Paso 2.2.2.1
Eleva a la potencia de .
Paso 2.2.2.2
Resta de .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4