Cálculo Ejemplos

Hallar el máximo y mínimo absoluto del intervalo p=1/12x^2-6x+108 , 0<=x<=36
,
Paso 1
Obtén los puntos críticos.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Combina y .
Paso 1.1.1.2.4
Combina y .
Paso 1.1.1.2.5
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.1.1.2.5.1
Factoriza de .
Paso 1.1.1.2.5.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.1.1.2.5.2.1
Factoriza de .
Paso 1.1.1.2.5.2.2
Cancela el factor común.
Paso 1.1.1.2.5.2.3
Reescribe la expresión.
Paso 1.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.4.2
Suma y .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Suma a ambos lados de la ecuación.
Paso 1.2.3
Multiplica ambos lados de la ecuación por .
Paso 1.2.4
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 1.2.4.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.4.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.4.1.1.1
Cancela el factor común.
Paso 1.2.4.1.1.2
Reescribe la expresión.
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Multiplica por .
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 1.4.1
Evalúa en .
Toca para ver más pasos...
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Toca para ver más pasos...
Paso 1.4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.1.2.1.1
Eleva a la potencia de .
Paso 1.4.1.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.1.2.1.2.1
Factoriza de .
Paso 1.4.1.2.1.2.2
Cancela el factor común.
Paso 1.4.1.2.1.2.3
Reescribe la expresión.
Paso 1.4.1.2.1.3
Multiplica por .
Paso 1.4.1.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 1.4.1.2.2.1
Resta de .
Paso 1.4.1.2.2.2
Suma y .
Paso 1.4.2
Enumera todos los puntos.
Paso 2
Evalúa en los extremos incluidos.
Toca para ver más pasos...
Paso 2.1
Evalúa en .
Toca para ver más pasos...
Paso 2.1.1
Sustituye por .
Paso 2.1.2
Simplifica.
Toca para ver más pasos...
Paso 2.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 2.1.2.1.2
Multiplica por .
Paso 2.1.2.1.3
Multiplica por .
Paso 2.1.2.2
Simplifica mediante la adición de números.
Toca para ver más pasos...
Paso 2.1.2.2.1
Suma y .
Paso 2.1.2.2.2
Suma y .
Paso 2.2
Evalúa en .
Toca para ver más pasos...
Paso 2.2.1
Sustituye por .
Paso 2.2.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.2.1.1
Eleva a la potencia de .
Paso 2.2.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.2.1
Factoriza de .
Paso 2.2.2.1.2.2
Cancela el factor común.
Paso 2.2.2.1.2.3
Reescribe la expresión.
Paso 2.2.2.1.3
Multiplica por .
Paso 2.2.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 2.2.2.2.1
Resta de .
Paso 2.2.2.2.2
Suma y .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4