Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Grafica cada lado de la ecuación. La solución es el valor x del punto de intersección.
No hay solución
No hay solución
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos
No se obtuvieron puntos críticos
Paso 2
Paso 2.1
Evalúa en .
Paso 2.1.1
Sustituye por .
Paso 2.1.2
Simplifica.
Paso 2.1.2.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.1.2.2
Eleva a la potencia de .
Paso 2.1.2.3
Divide por .
Paso 2.2
Evalúa en .
Paso 2.2.1
Sustituye por .
Paso 2.2.2
Eleva a la potencia de .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4