Cálculo Ejemplos

Hallar el máximo y mínimo absoluto del intervalo m(x) = natural log of x , given 1/10<=x<=1/5
, given
Paso 1
Obtén los puntos críticos.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
La derivada de con respecto a es .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Establece el numerador igual a cero.
Paso 1.2.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 1.3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 1.4.1
Evalúa en .
Toca para ver más pasos...
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
El logaritmo natural de cero es indefinido.
Indefinida
Indefinida
Indefinida
Paso 1.5
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos
No se obtuvieron puntos críticos
Paso 2
Evalúa en los extremos incluidos.
Toca para ver más pasos...
Paso 2.1
Sustituye por .
Paso 2.2
Sustituye por .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4