Cálculo Ejemplos

البحث عن خط المماس في (0,0) y=sin(8x)+sin(8x)^2 , (0,0)
,
Paso 1
Obtén la primera derivada y evalúa en y para obtener la pendiente de la recta tangente.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.2.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.1.2
La derivada de con respecto a es .
Paso 1.2.1.3
Reemplaza todos los casos de con .
Paso 1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.4
Multiplica por .
Paso 1.2.5
Mueve a la izquierda de .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.1.3
Reemplaza todos los casos de con .
Paso 1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2.2
La derivada de con respecto a es .
Paso 1.3.2.3
Reemplaza todos los casos de con .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Multiplica por .
Paso 1.3.6
Mueve a la izquierda de .
Paso 1.3.7
Multiplica por .
Paso 1.4
Reordena los términos.
Paso 1.5
Evalúa la derivada en .
Paso 1.6
Simplifica.
Toca para ver más pasos...
Paso 1.6.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.6.1.1
Multiplica por .
Paso 1.6.1.2
El valor exacto de es .
Paso 1.6.1.3
Multiplica por .
Paso 1.6.1.4
Multiplica por .
Paso 1.6.1.5
El valor exacto de es .
Paso 1.6.1.6
Multiplica por .
Paso 1.6.1.7
Multiplica por .
Paso 1.6.1.8
El valor exacto de es .
Paso 1.6.1.9
Multiplica por .
Paso 1.6.2
Suma y .
Paso 2
Inserta los valores del punto y la pendiente en la fórmula de punto-pendiente y resuelve .
Toca para ver más pasos...
Paso 2.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 2.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 2.3
Resuelve
Toca para ver más pasos...
Paso 2.3.1
Suma y .
Paso 2.3.2
Suma y .
Paso 3