Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Diferencia ambos lados de la ecuación.
Paso 1.2
Diferencia el lado izquierdo de la ecuación.
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Evalúa .
Paso 1.2.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.2.2.2.3
Reemplaza todos los casos de con .
Paso 1.2.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.2.5
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.2.5.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.2.5.3
Reemplaza todos los casos de con .
Paso 1.2.2.6
Reescribe como .
Paso 1.2.2.7
Multiplica por .
Paso 1.2.2.8
Mueve a la izquierda de .
Paso 1.2.2.9
Mueve a la izquierda de .
Paso 1.2.2.10
Mueve a la izquierda de .
Paso 1.2.3
Evalúa .
Paso 1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3.2
Reescribe como .
Paso 1.2.4
Evalúa .
Paso 1.2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.4.3
Multiplica por .
Paso 1.2.5
Simplifica.
Paso 1.2.5.1
Reordena los términos.
Paso 1.2.5.2
Reordena los factores en .
Paso 1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4
Reforma la ecuación al hacer que el lado izquierdo sea igual al lado derecho.
Paso 1.5
Resuelve
Paso 1.5.1
Reordena los factores en .
Paso 1.5.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 1.5.2.1
Resta de ambos lados de la ecuación.
Paso 1.5.2.2
Suma a ambos lados de la ecuación.
Paso 1.5.3
Factoriza de .
Paso 1.5.3.1
Factoriza de .
Paso 1.5.3.2
Factoriza de .
Paso 1.5.3.3
Factoriza de .
Paso 1.5.4
Divide cada término en por y simplifica.
Paso 1.5.4.1
Divide cada término en por .
Paso 1.5.4.2
Simplifica el lado izquierdo.
Paso 1.5.4.2.1
Cancela el factor común de .
Paso 1.5.4.2.1.1
Cancela el factor común.
Paso 1.5.4.2.1.2
Reescribe la expresión.
Paso 1.5.4.2.2
Cancela el factor común de .
Paso 1.5.4.2.2.1
Cancela el factor común.
Paso 1.5.4.2.2.2
Divide por .
Paso 1.5.4.3
Simplifica el lado derecho.
Paso 1.5.4.3.1
Simplifica cada término.
Paso 1.5.4.3.1.1
Cancela el factor común de y .
Paso 1.5.4.3.1.1.1
Factoriza de .
Paso 1.5.4.3.1.1.2
Cancela los factores comunes.
Paso 1.5.4.3.1.1.2.1
Cancela el factor común.
Paso 1.5.4.3.1.1.2.2
Reescribe la expresión.
Paso 1.5.4.3.1.2
Mueve el negativo al frente de la fracción.
Paso 1.5.4.3.1.3
Cancela el factor común de .
Paso 1.5.4.3.1.3.1
Cancela el factor común.
Paso 1.5.4.3.1.3.2
Reescribe la expresión.
Paso 1.5.4.3.2
Simplifica los términos.
Paso 1.5.4.3.2.1
Combina los numeradores sobre el denominador común.
Paso 1.5.4.3.2.2
Factoriza de .
Paso 1.5.4.3.2.3
Factoriza de .
Paso 1.5.4.3.2.4
Factoriza de .
Paso 1.5.4.3.2.5
Simplifica la expresión.
Paso 1.5.4.3.2.5.1
Reescribe como .
Paso 1.5.4.3.2.5.2
Mueve el negativo al frente de la fracción.
Paso 1.6
Reemplaza con .
Paso 1.7
Evalúa y .
Paso 1.7.1
Reemplaza la variable con en la expresión.
Paso 1.7.2
Reemplaza la variable con en la expresión.
Paso 1.7.3
Simplifica el numerador.
Paso 1.7.3.1
Reescribe como .
Paso 1.7.3.2
Reescribe como .
Paso 1.7.3.3
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 1.7.3.4
Simplifica.
Paso 1.7.3.4.1
Cualquier valor elevado a es .
Paso 1.7.3.4.2
Multiplica por .
Paso 1.7.3.4.3
Suma y .
Paso 1.7.3.4.4
Cualquier valor elevado a es .
Paso 1.7.3.4.5
Multiplica por .
Paso 1.7.3.4.6
Suma y .
Paso 1.7.4
Simplifica el denominador.
Paso 1.7.4.1
Multiplica por .
Paso 1.7.4.2
Cualquier valor elevado a es .
Paso 1.7.4.3
Multiplica por .
Paso 1.7.4.4
Resta de .
Paso 1.7.5
Simplifica la expresión.
Paso 1.7.5.1
Multiplica por .
Paso 1.7.5.2
Divide por .
Paso 1.7.5.3
Multiplica por .
Paso 2
Paso 2.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 2.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 2.3
Resuelve
Paso 2.3.1
Suma y .
Paso 2.3.2
Suma a ambos lados de la ecuación.
Paso 3