Cálculo Ejemplos

البحث عن خط المماس في (3,0) y=x^3-9x at the point (3,0)
at the point
Paso 1
Obtén la primera derivada y evalúa en y para obtener la pendiente de la recta tangente.
Toca para ver más pasos...
Paso 1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa la derivada en .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.4.1.1.1
Multiplica por .
Toca para ver más pasos...
Paso 1.4.1.1.1.1
Eleva a la potencia de .
Paso 1.4.1.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.1.1.2
Suma y .
Paso 1.4.1.2
Eleva a la potencia de .
Paso 1.4.2
Resta de .
Paso 2
Inserta los valores del punto y la pendiente en la fórmula de punto-pendiente y resuelve .
Toca para ver más pasos...
Paso 2.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 2.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 2.3
Resuelve
Toca para ver más pasos...
Paso 2.3.1
Suma y .
Paso 2.3.2
Simplifica .
Toca para ver más pasos...
Paso 2.3.2.1
Aplica la propiedad distributiva.
Paso 2.3.2.2
Multiplica por .
Paso 3