Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Deja . Obtén .
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Paso 2.1
Simplifica.
Paso 2.1.1
Reescribe como .
Paso 2.1.1.1
Usa para reescribir como .
Paso 2.1.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.1.3
Combina y .
Paso 2.1.1.4
Cancela el factor común de .
Paso 2.1.1.4.1
Cancela el factor común.
Paso 2.1.1.4.2
Reescribe la expresión.
Paso 2.1.1.5
Simplifica.
Paso 2.1.2
Combina y .
Paso 2.2
Usa para reescribir como .
Paso 3
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Combina y .
Paso 3.3
Eleva a la potencia de .
Paso 3.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.5
Escribe como una fracción con un denominador común.
Paso 3.6
Combina los numeradores sobre el denominador común.
Paso 3.7
Suma y .
Paso 3.8
Combina y .
Paso 4
Paso 4.1
Factoriza de .
Paso 4.2
Cancela los factores comunes.
Paso 4.2.1
Factoriza de .
Paso 4.2.2
Cancela el factor común.
Paso 4.2.3
Reescribe la expresión.
Paso 4.2.4
Divide por .
Paso 5
Divide la única integral en varias integrales.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Según la regla de la potencia, la integral de con respecto a es .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Paso 10.1
Simplifica.
Paso 10.2
Reescribe como .
Paso 10.3
Simplifica.
Paso 10.3.1
Combina y .
Paso 10.3.2
Multiplica por .
Paso 10.3.3
Mueve el negativo al frente de la fracción.
Paso 11
Reemplaza todos los casos de con .