Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Deja . Obtén .
Paso 1.1.1
Diferencia .
Paso 1.1.2
Diferencia.
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3
Evalúa .
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Resta de .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Paso 2.1
Reescribe como .
Paso 2.1.1
Usa para reescribir como .
Paso 2.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.3
Combina y .
Paso 2.1.4
Cancela el factor común de .
Paso 2.1.4.1
Cancela el factor común.
Paso 2.1.4.2
Reescribe la expresión.
Paso 2.1.5
Simplifica.
Paso 2.2
Mueve el negativo al frente de la fracción.
Paso 2.3
Combina y .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Paso 4.1
Aplica la propiedad distributiva.
Paso 4.2
Combina y .
Paso 4.3
Factoriza el negativo.
Paso 4.4
Eleva a la potencia de .
Paso 4.5
Usa la regla de la potencia para combinar exponentes.
Paso 4.6
Escribe como una fracción con un denominador común.
Paso 4.7
Combina los numeradores sobre el denominador común.
Paso 4.8
Suma y .
Paso 4.9
Multiplica por .
Paso 5
Mueve el negativo al frente de la fracción.
Paso 6
Divide la única integral en varias integrales.
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Combina y .
Paso 11
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 12
Según la regla de la potencia, la integral de con respecto a es .
Paso 13
Paso 13.1
Combina y .
Paso 13.2
Simplifica.
Paso 14
Reordena los términos.
Paso 15
Reemplaza todos los casos de con .