Cálculo Ejemplos

Integrar por sustitución ( integral de x^2 logaritmo natural de x^2+1 con respecto a x)
Paso 1
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Simplifica.
Toca para ver más pasos...
Paso 2.1
Combina y .
Paso 2.2
Combina y .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Integra por partes mediante la fórmula , donde y .
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
Combina y .
Paso 5.2
Combina y .
Paso 5.3
Mueve a la izquierda de .
Paso 5.4
Combina y .
Paso 5.5
Multiplica por .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
La integral de con respecto a es .
Paso 8
Reescribe como .
Paso 9
Elimina los paréntesis.
Paso 10
Reescribe como .
Paso 11
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 11.1
Reemplaza todos los casos de con .
Paso 11.2
Reemplaza todos los casos de con .
Paso 11.3
Reemplaza todos los casos de con .
Paso 12
Simplifica.
Toca para ver más pasos...
Paso 12.1
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 12.1.1
Resta de .
Paso 12.1.2
Suma y .
Paso 12.1.3
Resta de .
Paso 12.1.4
Suma y .
Paso 12.2
Combina los numeradores sobre el denominador común.
Paso 12.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 12.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 12.3.1.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 12.3.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 12.3.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 12.3.1.1.2.1
Cancela el factor común.
Paso 12.3.1.1.2.2
Reescribe la expresión.
Paso 12.3.1.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 12.3.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 12.3.1.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 12.3.1.2.2.1
Cancela el factor común.
Paso 12.3.1.2.2.2
Reescribe la expresión.
Paso 12.3.2
Reordena los factores en .
Paso 12.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 12.4.1
Factoriza de .
Toca para ver más pasos...
Paso 12.4.1.1
Factoriza de .
Paso 12.4.1.2
Factoriza de .
Paso 12.4.1.3
Factoriza de .
Paso 12.4.2
Reescribe como .
Paso 12.4.3
Usa la propiedad del cociente de los logaritmos, .
Paso 12.5
Combinar.
Paso 12.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 12.6.1
Cancela el factor común.
Paso 12.6.2
Reescribe la expresión.
Paso 12.7
Multiplica por .