Cálculo Ejemplos

Integrar por sustitución integral de (x^2)/( raíz cuadrada de x+2) con respecto a x
Paso 1
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 2.1
Usa para reescribir como .
Paso 2.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2
Combina y .
Paso 2.3.3
Mueve el negativo al frente de la fracción.
Paso 3
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 3.1
Deja . Obtén .
Toca para ver más pasos...
Paso 3.1.1
Diferencia .
Paso 3.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.1.5
Suma y .
Paso 3.2
Reescribe el problema mediante y .
Paso 4
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.1.1
Diferencia .
Paso 4.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5
Suma y .
Paso 4.2
Reescribe el problema mediante y .
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
Reescribe como .
Paso 5.2
Aplica la propiedad distributiva.
Paso 5.3
Aplica la propiedad distributiva.
Paso 5.4
Aplica la propiedad distributiva.
Paso 5.5
Aplica la propiedad distributiva.
Paso 5.6
Aplica la propiedad distributiva.
Paso 5.7
Aplica la propiedad distributiva.
Paso 5.8
Reordena y .
Paso 5.9
Eleva a la potencia de .
Paso 5.10
Eleva a la potencia de .
Paso 5.11
Usa la regla de la potencia para combinar exponentes.
Paso 5.12
Suma y .
Paso 5.13
Usa la regla de la potencia para combinar exponentes.
Paso 5.14
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.15
Combina y .
Paso 5.16
Combina los numeradores sobre el denominador común.
Paso 5.17
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.17.1
Multiplica por .
Paso 5.17.2
Resta de .
Paso 5.18
Eleva a la potencia de .
Paso 5.19
Usa la regla de la potencia para combinar exponentes.
Paso 5.20
Escribe como una fracción con un denominador común.
Paso 5.21
Combina los numeradores sobre el denominador común.
Paso 5.22
Resta de .
Paso 5.23
Eleva a la potencia de .
Paso 5.24
Usa la regla de la potencia para combinar exponentes.
Paso 5.25
Escribe como una fracción con un denominador común.
Paso 5.26
Combina los numeradores sobre el denominador común.
Paso 5.27
Resta de .
Paso 5.28
Multiplica por .
Paso 5.29
Resta de .
Paso 5.30
Reordena y .
Paso 5.31
Reordena y .
Paso 6
Divide la única integral en varias integrales.
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Según la regla de la potencia, la integral de con respecto a es .
Paso 12
Simplifica.
Toca para ver más pasos...
Paso 12.1
Combina y .
Paso 12.2
Simplifica.
Paso 13
Reordena los términos.
Paso 14
Simplifica.
Toca para ver más pasos...
Paso 14.1
Combina y .
Paso 14.2
Multiplica por .
Paso 14.3
Mueve el negativo al frente de la fracción.
Paso 15
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 15.1
Reemplaza todos los casos de con .
Paso 15.2
Reemplaza todos los casos de con .
Paso 15.3
Reemplaza todos los casos de con .
Paso 16
Simplifica.
Toca para ver más pasos...
Paso 16.1
Resta de .
Paso 16.2
Suma y .
Paso 16.3
Resta de .
Paso 16.4
Suma y .
Paso 16.5
Resta de .
Paso 16.6
Suma y .
Paso 16.7
Combina y .
Paso 17
Reordena los términos.