Cálculo Ejemplos

Integrar por sustitución integral de arctan(x) con respecto a x
Paso 1
Integra por partes mediante la fórmula , donde y .
Paso 2
Combina y .
Paso 3
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 3.1
Deja . Obtén .
Toca para ver más pasos...
Paso 3.1.1
Diferencia .
Paso 3.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.1.5
Suma y .
Paso 3.2
Reescribe el problema mediante y .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Multiplica por .
Paso 4.2
Mueve a la izquierda de .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
La integral de con respecto a es .
Paso 7
Simplifica.
Paso 8
Reemplaza todos los casos de con .