Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Deja . Obtén .
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Paso 2.1
Usa para reescribir como .
Paso 2.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.3
Multiplica los exponentes en .
Paso 2.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2
Combina y .
Paso 2.3.3
Mueve el negativo al frente de la fracción.
Paso 3
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Aplica la propiedad distributiva.
Paso 3.3
Aplica la propiedad distributiva.
Paso 3.4
Eleva a la potencia de .
Paso 3.5
Usa la regla de la potencia para combinar exponentes.
Paso 3.6
Escribe como una fracción con un denominador común.
Paso 3.7
Combina los numeradores sobre el denominador común.
Paso 3.8
Resta de .
Paso 3.9
Multiplica por .
Paso 3.10
Multiplica por .
Paso 3.11
Suma y .
Paso 4
Divide la única integral en varias integrales.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Según la regla de la potencia, la integral de con respecto a es .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Paso 9.1
Simplifica.
Paso 9.2
Reescribe como .
Paso 9.3
Multiplica por .
Paso 10
Reemplaza todos los casos de con .