Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Deja . Obtén .
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Usa para reescribir como .
Paso 3
Paso 3.1
Deja . Obtén .
Paso 3.1.1
Diferencia .
Paso 3.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.1.5
Suma y .
Paso 3.2
Reescribe el problema mediante y .
Paso 4
Paso 4.1
Deja . Obtén .
Paso 4.1.1
Diferencia .
Paso 4.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5
Suma y .
Paso 4.2
Reescribe el problema mediante y .
Paso 5
Paso 5.1
Reescribe como .
Paso 5.2
Aplica la propiedad distributiva.
Paso 5.3
Aplica la propiedad distributiva.
Paso 5.4
Aplica la propiedad distributiva.
Paso 5.5
Aplica la propiedad distributiva.
Paso 5.6
Aplica la propiedad distributiva.
Paso 5.7
Aplica la propiedad distributiva.
Paso 5.8
Reordena y .
Paso 5.9
Eleva a la potencia de .
Paso 5.10
Eleva a la potencia de .
Paso 5.11
Usa la regla de la potencia para combinar exponentes.
Paso 5.12
Suma y .
Paso 5.13
Usa la regla de la potencia para combinar exponentes.
Paso 5.14
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.15
Combina y .
Paso 5.16
Combina los numeradores sobre el denominador común.
Paso 5.17
Simplifica el numerador.
Paso 5.17.1
Multiplica por .
Paso 5.17.2
Suma y .
Paso 5.18
Eleva a la potencia de .
Paso 5.19
Usa la regla de la potencia para combinar exponentes.
Paso 5.20
Escribe como una fracción con un denominador común.
Paso 5.21
Combina los numeradores sobre el denominador común.
Paso 5.22
Suma y .
Paso 5.23
Eleva a la potencia de .
Paso 5.24
Usa la regla de la potencia para combinar exponentes.
Paso 5.25
Escribe como una fracción con un denominador común.
Paso 5.26
Combina los numeradores sobre el denominador común.
Paso 5.27
Suma y .
Paso 5.28
Multiplica por .
Paso 5.29
Resta de .
Paso 5.30
Reordena y .
Paso 5.31
Reordena y .
Paso 6
Divide la única integral en varias integrales.
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Según la regla de la potencia, la integral de con respecto a es .
Paso 10
Combina y .
Paso 11
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 12
Según la regla de la potencia, la integral de con respecto a es .
Paso 13
Paso 13.1
Combina y .
Paso 13.2
Simplifica.
Paso 14
Reordena los términos.
Paso 15
Paso 15.1
Combina y .
Paso 15.2
Multiplica por .
Paso 15.3
Mueve el negativo al frente de la fracción.
Paso 16
Paso 16.1
Reemplaza todos los casos de con .
Paso 16.2
Reemplaza todos los casos de con .
Paso 16.3
Reemplaza todos los casos de con .