Cálculo Ejemplos

Integrar por sustitución integral de 0 a 4 de 1/( raíz cuadrada de 2x+1) con respecto a x
Paso 1
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4.2
Suma y .
Paso 1.2
Sustituye el límite inferior por en .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Suma y .
Paso 1.4
Sustituye el límite superior por en .
Paso 1.5
Simplifica.
Toca para ver más pasos...
Paso 1.5.1
Multiplica por .
Paso 1.5.2
Suma y .
Paso 1.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 1.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 2
Simplifica.
Toca para ver más pasos...
Paso 2.1
Multiplica por .
Paso 2.2
Mueve a la izquierda de .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 4.1
Usa para reescribir como .
Paso 4.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 4.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.3.2
Combina y .
Paso 4.3.3
Mueve el negativo al frente de la fracción.
Paso 5
Según la regla de la potencia, la integral de con respecto a es .
Paso 6
Simplifica la expresión.
Toca para ver más pasos...
Paso 6.1
Evalúa en y en .
Paso 6.2
Simplifica.
Toca para ver más pasos...
Paso 6.2.1
Reescribe como .
Paso 6.2.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.2.3.1
Cancela el factor común.
Paso 6.2.3.2
Reescribe la expresión.
Paso 6.2.4
Evalúa el exponente.
Paso 6.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 6.3.1
Multiplica por .
Paso 6.3.2
Uno elevado a cualquier potencia es uno.
Paso 6.3.3
Multiplica por .
Paso 6.3.4
Resta de .
Paso 6.4
Simplifica.
Toca para ver más pasos...
Paso 6.4.1
Combina y .
Paso 6.4.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 6.4.2.1
Factoriza de .
Paso 6.4.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 6.4.2.2.1
Factoriza de .
Paso 6.4.2.2.2
Cancela el factor común.
Paso 6.4.2.2.3
Reescribe la expresión.
Paso 6.4.2.2.4
Divide por .