Cálculo Ejemplos

Integrar por sustitución integral de x/( raíz cuadrada de x-1) con respecto a x
Paso 1
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5
Suma y .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 2.1
Usa para reescribir como .
Paso 2.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2
Combina y .
Paso 2.3.3
Mueve el negativo al frente de la fracción.
Paso 3
Expande .
Toca para ver más pasos...
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Eleva a la potencia de .
Paso 3.3
Usa la regla de la potencia para combinar exponentes.
Paso 3.4
Escribe como una fracción con un denominador común.
Paso 3.5
Combina los numeradores sobre el denominador común.
Paso 3.6
Resta de .
Paso 3.7
Multiplica por .
Paso 4
Divide la única integral en varias integrales.
Paso 5
Según la regla de la potencia, la integral de con respecto a es .
Paso 6
Según la regla de la potencia, la integral de con respecto a es .
Paso 7
Simplifica.
Paso 8
Reemplaza todos los casos de con .