Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Paso 5.1
Evalúa el límite del numerador y el límite del denominador.
Paso 5.1.1
Resta el límite del numerador y el límite del denominador.
Paso 5.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 5.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 5.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 5.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 5.3
Obtén la derivada del numerador y el denominador.
Paso 5.3.1
Diferencia el numerador y el denominador.
Paso 5.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 6
Mueve el término fuera del límite porque es constante con respecto a .
Paso 7
Paso 7.1
Evalúa el límite del numerador y el límite del denominador.
Paso 7.1.1
Resta el límite del numerador y el límite del denominador.
Paso 7.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 7.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 7.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 7.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 7.3
Obtén la derivada del numerador y el denominador.
Paso 7.3.1
Diferencia el numerador y el denominador.
Paso 7.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 8
Mueve el término fuera del límite porque es constante con respecto a .
Paso 9
Paso 9.1
Evalúa el límite del numerador y el límite del denominador.
Paso 9.1.1
Resta el límite del numerador y el límite del denominador.
Paso 9.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 9.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 9.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 9.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 9.3
Obtén la derivada del numerador y el denominador.
Paso 9.3.1
Diferencia el numerador y el denominador.
Paso 9.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 9.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 10
Mueve el término fuera del límite porque es constante con respecto a .
Paso 11
Paso 11.1
Evalúa el límite del numerador y el límite del denominador.
Paso 11.1.1
Resta el límite del numerador y el límite del denominador.
Paso 11.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 11.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 11.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 11.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 11.3
Obtén la derivada del numerador y el denominador.
Paso 11.3.1
Diferencia el numerador y el denominador.
Paso 11.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 12
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 13
Paso 13.1
Multiplica por .
Paso 13.2
Multiplica por .
Paso 13.3
Multiplica por .
Paso 13.4
Multiplica por .