Cálculo Ejemplos

البحث عن خط المماس في x=-1 f(x)=-x^3-5x^2+2 at x=-1
at
Paso 1
Obtén el valor de correspondiente a .
Toca para ver más pasos...
Paso 1.1
Sustituye por .
Paso 1.2
Simplifica .
Toca para ver más pasos...
Paso 1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.2.1.1.1
Multiplica por .
Toca para ver más pasos...
Paso 1.2.1.1.1.1
Eleva a la potencia de .
Paso 1.2.1.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.2.1.1.2
Suma y .
Paso 1.2.1.2
Eleva a la potencia de .
Paso 1.2.1.3
Eleva a la potencia de .
Paso 1.2.1.4
Multiplica por .
Paso 1.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 1.2.2.1
Resta de .
Paso 1.2.2.2
Suma y .
Paso 2
Obtén la primera derivada y evalúa en y para obtener la pendiente de la recta tangente.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Suma y .
Paso 2.5
Evalúa la derivada en .
Paso 2.6
Simplifica.
Toca para ver más pasos...
Paso 2.6.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.6.1.1
Eleva a la potencia de .
Paso 2.6.1.2
Multiplica por .
Paso 2.6.1.3
Multiplica por .
Paso 2.6.2
Suma y .
Paso 3
Inserta los valores del punto y la pendiente en la fórmula de punto-pendiente y resuelve .
Toca para ver más pasos...
Paso 3.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 3.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 3.3
Resuelve
Toca para ver más pasos...
Paso 3.3.1
Simplifica .
Toca para ver más pasos...
Paso 3.3.1.1
Reescribe.
Paso 3.3.1.2
Simplifica mediante la adición de ceros.
Paso 3.3.1.3
Aplica la propiedad distributiva.
Paso 3.3.1.4
Multiplica por .
Paso 3.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 3.3.2.1
Resta de ambos lados de la ecuación.
Paso 3.3.2.2
Resta de .
Paso 4