Cálculo Ejemplos

Evalúe el Límite limite a medida que x se aproxima a infinity de (x^2+5)/(x(2x^2+3))
Paso 1
Simplifica.
Toca para ver más pasos...
Paso 1.1
Aplica la propiedad distributiva.
Paso 1.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.3
Mueve a la izquierda de .
Paso 1.4
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.4.1
Mueve .
Paso 1.4.2
Multiplica por .
Toca para ver más pasos...
Paso 1.4.2.1
Eleva a la potencia de .
Paso 1.4.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.3
Suma y .
Paso 2
Divide el numerador y denominador por la potencia más alta de en el denominador, que es .
Paso 3
Evalúa el límite.
Toca para ver más pasos...
Paso 3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.1.1
Multiplica por .
Paso 3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.1.2.1
Factoriza de .
Paso 3.1.2.2
Cancela el factor común.
Paso 3.1.2.3
Reescribe la expresión.
Paso 3.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Divide por .
Paso 3.2.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.2.2.1
Factoriza de .
Paso 3.2.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.2.2.2.1
Factoriza de .
Paso 3.2.2.2.2
Cancela el factor común.
Paso 3.2.2.2.3
Reescribe la expresión.
Paso 3.3
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 3.4
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 4
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 5
Mueve el término fuera del límite porque es constante con respecto a .
Paso 6
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 7
Evalúa el límite.
Toca para ver más pasos...
Paso 7.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 7.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 7.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 8
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 9
Simplifica la respuesta.
Toca para ver más pasos...
Paso 9.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 9.1.1
Multiplica por .
Paso 9.1.2
Suma y .
Paso 9.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 9.2.1
Multiplica por .
Paso 9.2.2
Suma y .
Paso 9.3
Divide por .