Ingresa un problema...
Cálculo Ejemplos
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Paso 3.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
+ | + | + | + |
Paso 3.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+ | + | + | + |
Paso 3.3
Multiplica el nuevo término del cociente por el divisor.
+ | + | + | + | ||||||||
+ | + | + |
Paso 3.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+ | + | + | + | ||||||||
- | - | - |
Paso 3.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+ | + | + | + | ||||||||
- | - | - | |||||||||
+ |
Paso 3.6
La respuesta final es el cociente más el resto sobre el divisor.
Paso 4
Divide la única integral en varias integrales.
Paso 5
Aplica la regla de la constante.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Paso 7.1
Reordena y .
Paso 7.2
Reescribe como .
Paso 8
La integral de con respecto a es .
Paso 9
Simplifica.
Paso 10
La respuesta es la antiderivada de la función .