Cálculo Ejemplos

Evalúe el Límite limite a medida que x se aproxima a infinity de (3x^2+4x+3)/(x^3+x+14)
Paso 1
Divide el numerador y denominador por la potencia más alta de en el denominador, que es .
Paso 2
Evalúa el límite.
Toca para ver más pasos...
Paso 2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.1.1.1
Factoriza de .
Paso 2.1.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.1.1.2.1
Factoriza de .
Paso 2.1.1.2.2
Cancela el factor común.
Paso 2.1.1.2.3
Reescribe la expresión.
Paso 2.1.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.1.2.1
Factoriza de .
Paso 2.1.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.1.2.2.1
Factoriza de .
Paso 2.1.2.2.2
Cancela el factor común.
Paso 2.1.2.2.3
Reescribe la expresión.
Paso 2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1
Cancela el factor común.
Paso 2.2.1.2
Reescribe la expresión.
Paso 2.2.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.2.2.1
Eleva a la potencia de .
Paso 2.2.2.2
Factoriza de .
Paso 2.2.2.3
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.2.2.3.1
Factoriza de .
Paso 2.2.2.3.2
Cancela el factor común.
Paso 2.2.2.3.3
Reescribe la expresión.
Paso 2.3
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 2.4
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.5
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 6
Mueve el término fuera del límite porque es constante con respecto a .
Paso 7
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 8
Evalúa el límite.
Toca para ver más pasos...
Paso 8.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 8.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 9
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 10
Mueve el término fuera del límite porque es constante con respecto a .
Paso 11
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 12
Simplifica la respuesta.
Toca para ver más pasos...
Paso 12.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 12.1.1
Multiplica por .
Paso 12.1.2
Multiplica por .
Paso 12.1.3
Multiplica por .
Paso 12.1.4
Suma y .
Paso 12.1.5
Suma y .
Paso 12.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 12.2.1
Multiplica por .
Paso 12.2.2
Suma y .
Paso 12.2.3
Suma y .
Paso 12.3
Divide por .