Cálculo Ejemplos

Hallar el valor Máximo/Mínimo f(x)=x^4+x+2
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5
Suma y .
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Suma y .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5
Suma y .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Resta de ambos lados de la ecuación.
Paso 5.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.3.1
Divide cada término en por .
Paso 5.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2
Divide por .
Paso 5.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.3.1
Mueve el negativo al frente de la fracción.
Paso 5.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.5
Simplifica .
Toca para ver más pasos...
Paso 5.5.1
Reescribe como .
Toca para ver más pasos...
Paso 5.5.1.1
Reescribe como .
Paso 5.5.1.2
Reescribe como .
Paso 5.5.2
Retira los términos de abajo del radical.
Paso 5.5.3
Eleva a la potencia de .
Paso 5.5.4
Reescribe como .
Paso 5.5.5
Cualquier raíz de es .
Paso 5.5.6
Multiplica por .
Paso 5.5.7
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 5.5.7.1
Multiplica por .
Paso 5.5.7.2
Eleva a la potencia de .
Paso 5.5.7.3
Usa la regla de la potencia para combinar exponentes.
Paso 5.5.7.4
Suma y .
Paso 5.5.7.5
Reescribe como .
Toca para ver más pasos...
Paso 5.5.7.5.1
Usa para reescribir como .
Paso 5.5.7.5.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.5.7.5.3
Combina y .
Paso 5.5.7.5.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.5.7.5.4.1
Cancela el factor común.
Paso 5.5.7.5.4.2
Reescribe la expresión.
Paso 5.5.7.5.5
Evalúa el exponente.
Paso 5.5.8
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.5.8.1
Reescribe como .
Paso 5.5.8.2
Eleva a la potencia de .
Paso 5.5.8.3
Reescribe como .
Toca para ver más pasos...
Paso 5.5.8.3.1
Factoriza de .
Paso 5.5.8.3.2
Reescribe como .
Paso 5.5.8.4
Retira los términos de abajo del radical.
Paso 5.5.9
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.5.9.1
Factoriza de .
Paso 5.5.9.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.5.9.2.1
Factoriza de .
Paso 5.5.9.2.2
Cancela el factor común.
Paso 5.5.9.2.3
Reescribe la expresión.
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Usa la regla de la potencia para distribuir el exponente.
Toca para ver más pasos...
Paso 9.1.1
Aplica la regla del producto a .
Paso 9.1.2
Aplica la regla del producto a .
Paso 9.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 9.2.1
Eleva a la potencia de .
Paso 9.2.2
Multiplica por .
Paso 9.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 9.3.1
Reescribe como .
Paso 9.3.2
Eleva a la potencia de .
Paso 9.4
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 9.4.1
Eleva a la potencia de .
Paso 9.4.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 9.4.2.1
Factoriza de .
Paso 9.4.2.2
Cancela el factor común.
Paso 9.4.2.3
Reescribe la expresión.
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Obtén el valor de y cuando .
Toca para ver más pasos...
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 11.2.1
Elimina los paréntesis.
Paso 11.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 11.2.2.1
Usa la regla de la potencia para distribuir el exponente.
Toca para ver más pasos...
Paso 11.2.2.1.1
Aplica la regla del producto a .
Paso 11.2.2.1.2
Aplica la regla del producto a .
Paso 11.2.2.2
Eleva a la potencia de .
Paso 11.2.2.3
Multiplica por .
Paso 11.2.2.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.2.4.1
Reescribe como .
Paso 11.2.2.4.2
Eleva a la potencia de .
Paso 11.2.2.4.3
Reescribe como .
Toca para ver más pasos...
Paso 11.2.2.4.3.1
Factoriza de .
Paso 11.2.2.4.3.2
Reescribe como .
Paso 11.2.2.4.4
Retira los términos de abajo del radical.
Paso 11.2.2.5
Eleva a la potencia de .
Paso 11.2.2.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 11.2.2.6.1
Factoriza de .
Paso 11.2.2.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 11.2.2.6.2.1
Factoriza de .
Paso 11.2.2.6.2.2
Cancela el factor común.
Paso 11.2.2.6.2.3
Reescribe la expresión.
Paso 11.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 11.2.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 11.2.4.1
Multiplica por .
Paso 11.2.4.2
Multiplica por .
Paso 11.2.5
Combina los numeradores sobre el denominador común.
Paso 11.2.6
Simplifica cada término.
Toca para ver más pasos...
Paso 11.2.6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 11.2.6.1.1
Multiplica por .
Paso 11.2.6.1.2
Resta de .
Paso 11.2.6.2
Mueve el negativo al frente de la fracción.
Paso 11.2.7
La respuesta final es .
Paso 12
Estos son los extremos locales de .
es un mínimo local
Paso 13