Cálculo Ejemplos

Halle la antiderivada 2^(3-x/2)
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.1.1
Diferencia .
Paso 4.1.2
Diferencia.
Toca para ver más pasos...
Paso 4.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3
Evalúa .
Toca para ver más pasos...
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Multiplica por .
Paso 4.1.4
Resta de .
Paso 4.2
Reescribe el problema mediante y .
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.2
Multiplica por la recíproca de la fracción para dividir por .
Paso 5.3
Multiplica por .
Paso 5.4
Multiplica por .
Paso 5.5
Factoriza el negativo.
Paso 5.6
Eleva a la potencia de .
Paso 5.7
Usa la regla de la potencia para combinar exponentes.
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 7.1
Deja . Obtén .
Toca para ver más pasos...
Paso 7.1.1
Diferencia .
Paso 7.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 7.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.1.5
Suma y .
Paso 7.2
Reescribe el problema mediante y .
Paso 8
La integral de con respecto a es .
Paso 9
Reescribe como .
Paso 10
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 10.1
Reemplaza todos los casos de con .
Paso 10.2
Reemplaza todos los casos de con .
Paso 11
Combina y .
Paso 12
Reordena los términos.
Paso 13
La respuesta es la antiderivada de la función .