Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.3.4
Combina y .
Paso 1.3.5
Combina y .
Paso 1.3.6
Cancela el factor común de y .
Paso 1.3.6.1
Factoriza de .
Paso 1.3.6.2
Cancela los factores comunes.
Paso 1.3.6.2.1
Factoriza de .
Paso 1.3.6.2.2
Cancela el factor común.
Paso 1.3.6.2.3
Reescribe la expresión.
Paso 1.3.7
Mueve el negativo al frente de la fracción.
Paso 1.4
Evalúa .
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Combina y .
Paso 1.4.4
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.5
Evalúa .
Paso 1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.5.3
Multiplica por .
Paso 1.5.4
Combina y .
Paso 1.5.5
Combina y .
Paso 1.5.6
Cancela el factor común de y .
Paso 1.5.6.1
Factoriza de .
Paso 1.5.6.2
Cancela los factores comunes.
Paso 1.5.6.2.1
Factoriza de .
Paso 1.5.6.2.2
Cancela el factor común.
Paso 1.5.6.2.3
Reescribe la expresión.
Paso 1.5.7
Mueve el negativo al frente de la fracción.
Paso 1.6
Reordena los términos.
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.2.4
Combina y .
Paso 2.2.5
Multiplica por .
Paso 2.2.6
Combina y .
Paso 2.2.7
Cancela el factor común de y .
Paso 2.2.7.1
Factoriza de .
Paso 2.2.7.2
Cancela los factores comunes.
Paso 2.2.7.2.1
Factoriza de .
Paso 2.2.7.2.2
Cancela el factor común.
Paso 2.2.7.2.3
Reescribe la expresión.
Paso 2.2.7.2.4
Divide por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.3.4
Combina y .
Paso 2.3.5
Combina y .
Paso 2.3.6
Cancela el factor común de y .
Paso 2.3.6.1
Factoriza de .
Paso 2.3.6.2
Cancela los factores comunes.
Paso 2.3.6.2.1
Factoriza de .
Paso 2.3.6.2.2
Cancela el factor común.
Paso 2.3.6.2.3
Reescribe la expresión.
Paso 2.3.6.2.4
Divide por .
Paso 2.4
Evalúa .
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Reescribe como .
Paso 2.4.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.4.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.4.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.3.3
Reemplaza todos los casos de con .
Paso 2.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.5
Multiplica los exponentes en .
Paso 2.4.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.4.5.2
Multiplica por .
Paso 2.4.6
Multiplica por .
Paso 2.4.7
Eleva a la potencia de .
Paso 2.4.8
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.9
Resta de .
Paso 2.4.10
Multiplica por .
Paso 2.4.11
Combina y .
Paso 2.4.12
Combina y .
Paso 2.4.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.4.14
Cancela el factor común de y .
Paso 2.4.14.1
Factoriza de .
Paso 2.4.14.2
Cancela los factores comunes.
Paso 2.4.14.2.1
Factoriza de .
Paso 2.4.14.2.2
Cancela el factor común.
Paso 2.4.14.2.3
Reescribe la expresión.
Paso 2.5
Diferencia con la regla de la constante.
Paso 2.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.5.2
Suma y .
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3
Multiplica por .
Paso 3.4
Evalúa .
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Reescribe como .
Paso 3.4.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.4.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.4.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.3.3
Reemplaza todos los casos de con .
Paso 3.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.5
Multiplica los exponentes en .
Paso 3.4.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.5.2
Multiplica por .
Paso 3.4.6
Multiplica por .
Paso 3.4.7
Multiplica por sumando los exponentes.
Paso 3.4.7.1
Mueve .
Paso 3.4.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.7.3
Resta de .
Paso 3.4.8
Combina y .
Paso 3.4.9
Combina y .
Paso 3.4.10
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.4.11
Cancela el factor común de y .
Paso 3.4.11.1
Factoriza de .
Paso 3.4.11.2
Cancela los factores comunes.
Paso 3.4.11.2.1
Factoriza de .
Paso 3.4.11.2.2
Cancela el factor común.
Paso 3.4.11.2.3
Reescribe la expresión.
Paso 3.4.12
Mueve el negativo al frente de la fracción.
Paso 4
La tercera derivada de con respecto a es .