Cálculo Ejemplos

Hallar el valor Máximo/Mínimo y=1/3x^3+5/2x^2+6x+8
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Combina y .
Paso 1.2.4
Combina y .
Paso 1.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.5.1
Cancela el factor común.
Paso 1.2.5.2
Divide por .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Combina y .
Paso 1.3.4
Multiplica por .
Paso 1.3.5
Combina y .
Paso 1.3.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.3.6.1
Factoriza de .
Paso 1.3.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.3.6.2.1
Factoriza de .
Paso 1.3.6.2.2
Cancela el factor común.
Paso 1.3.6.2.3
Reescribe la expresión.
Paso 1.3.6.2.4
Divide por .
Paso 1.4
Evalúa .
Toca para ver más pasos...
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Multiplica por .
Paso 1.5
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5.2
Suma y .
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Suma y .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Toca para ver más pasos...
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Combina y .
Paso 4.1.2.4
Combina y .
Paso 4.1.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.2.5.1
Cancela el factor común.
Paso 4.1.2.5.2
Divide por .
Paso 4.1.3
Evalúa .
Toca para ver más pasos...
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Combina y .
Paso 4.1.3.4
Multiplica por .
Paso 4.1.3.5
Combina y .
Paso 4.1.3.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.1.3.6.1
Factoriza de .
Paso 4.1.3.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.1.3.6.2.1
Factoriza de .
Paso 4.1.3.6.2.2
Cancela el factor común.
Paso 4.1.3.6.2.3
Reescribe la expresión.
Paso 4.1.3.6.2.4
Divide por .
Paso 4.1.4
Evalúa .
Toca para ver más pasos...
Paso 4.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4.3
Multiplica por .
Paso 4.1.5
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 4.1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5.2
Suma y .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza con el método AC.
Toca para ver más pasos...
Paso 5.2.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 5.2.2
Escribe la forma factorizada mediante estos números enteros.
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.4.1
Establece igual a .
Paso 5.4.2
Resta de ambos lados de la ecuación.
Paso 5.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resta de ambos lados de la ecuación.
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Multiplica por .
Paso 9.2
Suma y .
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Obtén el valor de y cuando .
Toca para ver más pasos...
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 11.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 11.2.1.1
Eleva a la potencia de .
Paso 11.2.1.2
Combina y .
Paso 11.2.1.3
Mueve el negativo al frente de la fracción.
Paso 11.2.1.4
Eleva a la potencia de .
Paso 11.2.1.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 11.2.1.5.1
Factoriza de .
Paso 11.2.1.5.2
Cancela el factor común.
Paso 11.2.1.5.3
Reescribe la expresión.
Paso 11.2.1.6
Multiplica por .
Paso 11.2.1.7
Multiplica por .
Paso 11.2.2
Obtén el denominador común
Toca para ver más pasos...
Paso 11.2.2.1
Escribe como una fracción con el denominador .
Paso 11.2.2.2
Multiplica por .
Paso 11.2.2.3
Multiplica por .
Paso 11.2.2.4
Escribe como una fracción con el denominador .
Paso 11.2.2.5
Multiplica por .
Paso 11.2.2.6
Multiplica por .
Paso 11.2.2.7
Escribe como una fracción con el denominador .
Paso 11.2.2.8
Multiplica por .
Paso 11.2.2.9
Multiplica por .
Paso 11.2.3
Combina los numeradores sobre el denominador común.
Paso 11.2.4
Simplifica cada término.
Toca para ver más pasos...
Paso 11.2.4.1
Multiplica por .
Paso 11.2.4.2
Multiplica por .
Paso 11.2.4.3
Multiplica por .
Paso 11.2.5
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 11.2.5.1
Suma y .
Paso 11.2.5.2
Resta de .
Paso 11.2.5.3
Suma y .
Paso 11.2.6
La respuesta final es .
Paso 12
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 13
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 13.1
Multiplica por .
Paso 13.2
Suma y .
Paso 14
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 15
Obtén el valor de y cuando .
Toca para ver más pasos...
Paso 15.1
Reemplaza la variable con en la expresión.
Paso 15.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 15.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 15.2.1.1
Eleva a la potencia de .
Paso 15.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 15.2.1.2.1
Factoriza de .
Paso 15.2.1.2.2
Cancela el factor común.
Paso 15.2.1.2.3
Reescribe la expresión.
Paso 15.2.1.3
Eleva a la potencia de .
Paso 15.2.1.4
Multiplica .
Toca para ver más pasos...
Paso 15.2.1.4.1
Combina y .
Paso 15.2.1.4.2
Multiplica por .
Paso 15.2.1.5
Multiplica por .
Paso 15.2.2
Obtén el denominador común
Toca para ver más pasos...
Paso 15.2.2.1
Escribe como una fracción con el denominador .
Paso 15.2.2.2
Multiplica por .
Paso 15.2.2.3
Multiplica por .
Paso 15.2.2.4
Escribe como una fracción con el denominador .
Paso 15.2.2.5
Multiplica por .
Paso 15.2.2.6
Multiplica por .
Paso 15.2.2.7
Escribe como una fracción con el denominador .
Paso 15.2.2.8
Multiplica por .
Paso 15.2.2.9
Multiplica por .
Paso 15.2.3
Combina los numeradores sobre el denominador común.
Paso 15.2.4
Simplifica cada término.
Toca para ver más pasos...
Paso 15.2.4.1
Multiplica por .
Paso 15.2.4.2
Multiplica por .
Paso 15.2.4.3
Multiplica por .
Paso 15.2.5
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 15.2.5.1
Suma y .
Paso 15.2.5.2
Resta de .
Paso 15.2.5.3
Suma y .
Paso 15.2.6
La respuesta final es .
Paso 16
Estos son los extremos locales de .
es un mínimo local
es un máximo local
Paso 17