Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Paso 1.1.2.1
Evalúa el límite.
Paso 1.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.1.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.2.1.4
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Paso 1.1.2.3.1
Simplifica cada término.
Paso 1.1.2.3.1.1
Aplica la regla del producto a .
Paso 1.1.2.3.1.2
Eleva a la potencia de .
Paso 1.1.2.3.1.3
Eleva a la potencia de .
Paso 1.1.2.3.1.4
Cancela el factor común de .
Paso 1.1.2.3.1.4.1
Factoriza de .
Paso 1.1.2.3.1.4.2
Cancela el factor común.
Paso 1.1.2.3.1.4.3
Reescribe la expresión.
Paso 1.1.2.3.1.5
Multiplica por .
Paso 1.1.2.3.2
Resta de .
Paso 1.1.3
Evalúa el límite del denominador.
Paso 1.1.3.1
Evalúa el límite.
Paso 1.1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.3.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.3.1.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Simplifica la respuesta.
Paso 1.1.3.3.1
Simplifica cada término.
Paso 1.1.3.3.1.1
Cancela el factor común de .
Paso 1.1.3.3.1.1.1
Factoriza de .
Paso 1.1.3.3.1.1.2
Cancela el factor común.
Paso 1.1.3.3.1.1.3
Reescribe la expresión.
Paso 1.1.3.3.1.2
Multiplica por .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Evalúa .
Paso 1.3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4.3
Multiplica por .
Paso 1.3.5
Resta de .
Paso 1.3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.8
Evalúa .
Paso 1.3.8.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.8.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.8.3
Multiplica por .
Paso 1.3.9
Resta de .
Paso 1.4
Cancela el factor común de y .
Paso 1.4.1
Factoriza de .
Paso 1.4.2
Cancela los factores comunes.
Paso 1.4.2.1
Factoriza de .
Paso 1.4.2.2
Cancela el factor común.
Paso 1.4.2.3
Reescribe la expresión.
Paso 1.4.2.4
Divide por .
Paso 2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3
Evalúa el límite de mediante el ingreso de para .
Paso 4
Paso 4.1
Cancela el factor común de .
Paso 4.1.1
Factoriza de .
Paso 4.1.2
Cancela el factor común.
Paso 4.1.3
Reescribe la expresión.
Paso 4.2
Multiplica por .