Cálculo Ejemplos

Halle la antiderivada f(x)=1-sin(4x)
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Divide la única integral en varias integrales.
Paso 4
Aplica la regla de la constante.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 6.1
Deja . Obtén .
Toca para ver más pasos...
Paso 6.1.1
Diferencia .
Paso 6.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.1.4
Multiplica por .
Paso 6.2
Reescribe el problema mediante y .
Paso 7
Combina y .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
La integral de con respecto a es .
Paso 10
Simplifica.
Paso 11
Reemplaza todos los casos de con .
Paso 12
Reordena los términos.
Paso 13
La respuesta es la antiderivada de la función .