Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Deja . Obtén .
Paso 1.1.1
Diferencia .
Paso 1.1.2
Diferencia.
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3
Evalúa .
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Resta de .
Paso 1.2
Reescribe el problema mediante y .
Paso 2
Paso 2.1
Mueve el negativo al frente de la fracción.
Paso 2.2
Combina y .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Usa la fórmula del ángulo mitad para reescribir como .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Paso 7.1
Multiplica por .
Paso 7.2
Multiplica por .
Paso 8
Divide la única integral en varias integrales.
Paso 9
Aplica la regla de la constante.
Paso 10
Paso 10.1
Deja . Obtén .
Paso 10.1.1
Diferencia .
Paso 10.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 10.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 10.1.4
Multiplica por .
Paso 10.2
Reescribe el problema mediante y .
Paso 11
Combina y .
Paso 12
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13
La integral de con respecto a es .
Paso 14
Simplifica.
Paso 15
Paso 15.1
Reemplaza todos los casos de con .
Paso 15.2
Reemplaza todos los casos de con .
Paso 15.3
Reemplaza todos los casos de con .