Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Paso 1.1.2.1
Evalúa el límite.
Paso 1.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.1.3
Mueve el límite dentro del exponente.
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Paso 1.1.2.3.1
Simplifica cada término.
Paso 1.1.2.3.1.1
Cualquier valor elevado a es .
Paso 1.1.2.3.1.2
Multiplica por .
Paso 1.1.2.3.2
Resta de .
Paso 1.1.3
Evalúa el límite del denominador.
Paso 1.1.3.1
Evalúa el límite.
Paso 1.1.3.1.1
Mueve el límite dentro del logaritmo.
Paso 1.1.3.1.2
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.3.1.4
Mueve el límite dentro del exponente.
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Simplifica la respuesta.
Paso 1.1.3.3.1
Simplifica cada término.
Paso 1.1.3.3.1.1
Cualquier valor elevado a es .
Paso 1.1.3.3.1.2
Multiplica por .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.3.3
El logaritmo natural de es .
Paso 1.1.3.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Evalúa .
Paso 1.3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.3.5
Resta de .
Paso 1.3.6
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.3.6.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.6.2
La derivada de con respecto a es .
Paso 1.3.6.3
Reemplaza todos los casos de con .
Paso 1.3.7
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.9
Suma y .
Paso 1.3.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.11
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.3.12
Combina y .
Paso 1.4
Multiplica el numerador por la recíproca del denominador.
Paso 1.5
Combina factores.
Paso 1.5.1
Multiplica por .
Paso 1.5.2
Multiplica por .
Paso 1.5.3
Combina y .
Paso 1.6
Cancela el factor común de .
Paso 1.6.1
Cancela el factor común.
Paso 1.6.2
Divide por .
Paso 2
Paso 2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.3
Mueve el límite dentro del exponente.
Paso 3
Evalúa el límite de mediante el ingreso de para .
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Cualquier valor elevado a es .
Paso 4.1.2
Multiplica por .
Paso 4.2
Resta de .