Ingresa un problema...
Cálculo Ejemplos
Paso 1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.2
La derivada de con respecto a es .
Paso 2.3.3
Reemplaza todos los casos de con .
Paso 2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.6
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.6.1
Para aplicar la regla de la cadena, establece como .
Paso 2.6.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.6.3
Reemplaza todos los casos de con .
Paso 2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.9
Multiplica por .
Paso 2.10
Mueve a la izquierda de .
Paso 2.11
Multiplica por .
Paso 2.12
Mueve a la izquierda de .
Paso 3
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.2
La derivada de con respecto a es .
Paso 3.3.3
Reemplaza todos los casos de con .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.6
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.6.1
Para aplicar la regla de la cadena, establece como .
Paso 3.6.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.6.3
Reemplaza todos los casos de con .
Paso 3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.9
Multiplica por .
Paso 3.10
Multiplica por .
Paso 3.11
Multiplica por .
Paso 3.12
Mueve a la izquierda de .
Paso 4
Paso 4.1
Aplica la propiedad distributiva.
Paso 4.2
Aplica la propiedad distributiva.
Paso 4.3
Combina los términos.
Paso 4.3.1
Multiplica por .
Paso 4.3.2
Multiplica por .
Paso 4.3.3
Multiplica por .
Paso 4.3.4
Multiplica por .
Paso 4.3.5
Resta de .
Paso 4.3.5.1
Mueve .
Paso 4.3.5.2
Resta de .
Paso 4.3.6
Suma y .
Paso 4.3.6.1
Mueve .
Paso 4.3.6.2
Suma y .